123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145 |
- package main
- import (
- "demos/ops/ml"
- "flag"
- "fmt"
- "log"
- "os"
- "runtime/pprof"
- "github.com/hexasoftware/flow"
- "gonum.org/v1/gonum/mat"
- )
- var cpuprofile = flag.String("cpuprofile", "", "write cpu profile to file")
- var memprofile = flag.String("memprofile", "", "write mem profile to file")
- func main() {
- flag.Parse()
- if *cpuprofile != "" {
- f, err := os.Create(*cpuprofile)
- if err != nil {
- log.Fatal(err)
- }
- pprof.StartCPUProfile(f)
- defer pprof.StopCPUProfile()
- }
- if *memprofile != "" {
- f, err := os.Create(*memprofile)
- if err != nil {
- log.Fatal(err)
- }
- defer pprof.WriteHeapProfile(f)
- }
- // Registry for machine learning
- r := ml.New()
- f := flow.New()
- f.UseRegistry(r)
- samples := []float64{
- 0, 0,
- 0, 1,
- 1, 0,
- 1, 1,
- }
- labels := []float64{
- 0,
- 1,
- 1,
- 0,
- }
- learningRate := float64(0.3)
- nInputs := 2
- nHidden := 5
- nOutput := 1
- nSamples := 4
- matSamples := mat.NewDense(nSamples, 2, samples)
- matLabels := mat.NewDense(nSamples, 1, labels)
- // Define input
- // Make a matrix out of the input and output
- x := f.In(0)
- y := f.In(1)
- // [ 1, 2, 3, 4, 5]
- // [ 1, 2, 3, 4, 5]
- wHidden := f.Var("wHidden", f.Op("matNewRand", nInputs, nHidden))
- // [ 1 ]
- // [ 2 ]
- // [ 3 ]
- // [ 4 ]
- // [ 5 ]
- wOut := f.Var("wOut", f.Op("matNewRand", nHidden, nOutput))
- // Forward process
- hiddenLayerInput := f.Op("matMul", x, wHidden)
- hiddenLayerActivations := f.Op("matSigmoid", hiddenLayerInput)
- outputLayerInput := f.Op("matMul", hiddenLayerActivations, wOut)
- // Activations
- output := f.Op("matSigmoid", outputLayerInput)
- // Back propagation
- // output weights
- networkError := f.Op("matSub", y, output)
- slopeOutputLayer := f.Op("matSigmoidPrime", output)
- dOutput := f.Op("matMulElem", networkError, slopeOutputLayer)
- wOutAdj := f.Op("matScale",
- learningRate,
- f.Op("matMul", f.Op("matTranspose", hiddenLayerActivations), dOutput),
- )
- // hidden weights
- errorAtHiddenLayer := f.Op("matMul", dOutput, f.Op("matTranspose", wOut))
- slopeHiddenLayer := f.Op("matSigmoidPrime", hiddenLayerActivations)
- dHiddenLayer := f.Op("matMulElem", errorAtHiddenLayer, slopeHiddenLayer)
- wHiddenAdj := f.Op("matScale",
- learningRate,
- f.Op("matMul", f.Op("matTranspose", x), dHiddenLayer),
- )
- // Adjust the parameters
- setwOut := f.SetVar("wOut", f.Op("matAdd", wOut, wOutAdj))
- setwHidden := f.SetVar("wHidden", f.Op("matAdd", wHidden, wHiddenAdj))
- // Training
- for i := 0; i < 5000; i++ {
- sess := f.NewSession()
- sess.Inputs(matSamples, matLabels)
- _, err := sess.Run(setwOut, setwHidden)
- if err != nil {
- log.Fatal(err)
- }
- }
- // Same as above because its simple
- testSamples := matSamples
- testLabels := matLabels
- res, err := output.Process(testSamples)
- if err != nil {
- log.Fatal(err)
- }
- predictions := res.(mat.Matrix)
- log.Println("Predictions", predictions)
- var rights int
- numPreds, _ := predictions.Dims()
- log.Println("Number of predictions:", numPreds)
- for i := 0; i < numPreds; i++ {
- if predictions.At(i, 0) > 0.5 && testLabels.At(i, 0) == 1.0 ||
- predictions.At(i, 0) < 0.5 && testLabels.At(i, 0) == 0 {
- rights++
- }
- }
- accuracy := float64(rights) / float64(numPreds)
- fmt.Printf("\nAccuracy = %0.2f\n\n", accuracy)
- }
|